Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: covidwho-1820425

ABSTRACT

The International Virus Bioinformatics Meeting 2022 took place online, on 23-25 March 2022, and has attracted about 380 participants from all over the world. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The participants created a highly interactive scientific environment even without physical face-to-face interactions. This meeting is a focal point to gain an insight into the state-of-the-art of the virus bioinformatics research landscape and to interact with researchers in the forefront as well as aspiring young scientists. The meeting featured eight invited and 18 contributed talks in eight sessions on three days, as well as 52 posters, which were presented during three virtual poster sessions. The main topics were: SARS-CoV-2, viral emergence and surveillance, virus-host interactions, viral sequence analysis, virus identification and annotation, phages, and viral diversity. This report summarizes the main research findings and highlights presented at the meeting.


Subject(s)
COVID-19 , Viruses, Unclassified , Viruses , Computational Biology , DNA Viruses , Humans , SARS-CoV-2
2.
Commun Biol ; 4(1): 590, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1232076

ABSTRACT

The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host-pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.


Subject(s)
COVID-19/genetics , Computational Biology/methods , Host-Pathogen Interactions/genetics , Pandemics , SARS-CoV-2/genetics , Binding Sites , COVID-19/virology , Cytokines/genetics , Databases, Genetic , Gene Expression Regulation , Genome, Viral , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Seq , Serpins/genetics , Signal Transduction/genetics , Transcriptome , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL